Despite advancements in generic object detection, there remains a performance gap in detecting small objects compared to normal-scale objects. We for the first time observe that existing bounding box regression methods tend to produce distorted gradients for small objects and result in less accurate localization. To address this issue, we present a novel Confidence-driven Bounding Box Localization (C-BBL) method to rectify the gradients. C-BBL quantizes continuous labels into grids and formulates two-hot ground truth labels. In prediction, the bounding box head generates a confidence distribution over the grids. Unlike the bounding box regression paradigms in conventional detectors, we introduce a classification-based localization objective through cross entropy between ground truth and predicted confidence distribution, generating confidence-driven gradients. Additionally, C-BBL describes a uncertainty loss based on distribution entropy in labels and predictions to further reduce the uncertainty in small object localization. The method is evaluated on multiple detectors using three object detection benchmarks and consistently improves baseline detectors, achieving state-of-the-art performance. We also demonstrate the generalizability of C-BBL to different label systems and effectiveness for high resolution detection, which validates its prospect as a general solution.


翻译:尽管在通用天体探测方面取得了进展,但在探测小天体方面,与普通天体相比,在探测小天体方面仍然存在性差。我们第一次发现,现有的约束箱回归方法往往会为小天体产生扭曲的梯度,导致定位不准确。为解决这一问题,我们提出了一种新的信任驱动的环球框定位法(C-BBL),以纠正梯度。C-BBL将连续标签量化成网格,并制作双热地面真象标签。在预测中,约束箱头在网格上产生信任分布。与常规探测器的约束箱回归模式不同,我们采用基于分类的本地化目标,在地面真相和预测信任分布之间交叉放大,产生信任驱动梯度。此外,C-BBL描述了基于标签和预测中分布酶的不确定性损失,以进一步减少小天体定位的不确定性。C-BBL使用三种物体检测基准,并不断改进基线探测器,实现最新性能。我们还展示了C-BBL的通用定位性定位,作为不同分辨率的通用探测前景。</s>

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年4月24日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
13+阅读 · 2021年3月3日
Arxiv
12+阅读 · 2019年4月9日
Arxiv
12+阅读 · 2019年1月24日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关论文
Arxiv
0+阅读 · 2023年4月24日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
13+阅读 · 2021年3月3日
Arxiv
12+阅读 · 2019年4月9日
Arxiv
12+阅读 · 2019年1月24日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员