The use of supervised deep learning techniques to detect pathologies in brain MRI scans can be challenging due to the diversity of brain anatomy and the need for annotated data sets. An alternative approach is to use unsupervised anomaly detection, which only requires sample-level labels of healthy brains to create a reference representation. This reference representation can then be compared to unhealthy brain anatomy in a pixel-wise manner to identify abnormalities. To accomplish this, generative models are needed to create anatomically consistent MRI scans of healthy brains. While recent diffusion models have shown promise in this task, accurately generating the complex structure of the human brain remains a challenge. In this paper, we propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy, using spatial context to guide and improve reconstruction. We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
翻译:由于大脑解剖的多样性和需要附加说明的数据集,使用有监督的深层学习技术来检测大脑MRI扫描中的病理可能具有挑战性。另一种办法是使用未经监督的异常现象检测,这只要求健康大脑的样本级标签来建立参考代表。然后,这种参考表示法可以用像素方法与不健康的大脑解剖法作比较,以辨别异常现象。要做到这一点,需要基因化模型来创建在解剖上一致的健康大脑的 MRI扫描仪。虽然最近的传播模型显示这一任务很有希望,但准确生成人类大脑的复杂结构仍然是一项挑战。在本文件中,我们建议采用一种方法,重新配置传播模型的生成任务,作为对健康的大脑解剖术的跨基估计,利用空间环境来指导和改进重建。我们评估肿瘤和多分泌素损伤数据的方法,并比现有基线显示25.1%的相对改进率。</s>