Financial networks model a set of financial institutions (firms) interconnected by obligations. Recent work has introduced to this model a class of obligations called credit default swaps, a certain kind of financial derivatives. The main computational challenge for such systems is known as the clearing problem, which is to determine which firms are in default and to compute their exposure to systemic risk, technically known as their recovery rates. It is known that the recovery rates form the set of fixed points of a simple function, and that these fixed points can be irrational. Furthermore, Schuldenzucker et al. (2016) have shown that finding a weakly (or "almost") approximate (rational) fixed point is PPAD-complete. We further study the clearing problem from the point of view of irrationality and approximation strength. Firstly, we observe that weakly approximate solutions may misrepresent the actual financial state of an institution. On this basis, we study the complexity of finding a strongly (or "near") approximate solution, and show FIXP-completeness. We then study the structural properties required for irrationality, and we give necessary conditions for irrational solutions to emerge: The presence of certain types of cycles in a financial network forces the recovery rates to take the form of roots of non-linear polynomials. In the absence of a large subclass of such cycles, we study the complexity of finding an exact fixed point, which we show to be a problem close to, albeit outside of, PPAD.
翻译:一系列金融机构( 公司) 的金融网络模式。 最近的工作为这个模式引入了一类债务,称为信用违约互换( 信用违约互换), 一种金融衍生工具。 这些系统的主要计算挑战被称为清算问题, 即确定哪些公司违约, 并计算其暴露于系统性风险, 技术上称为回收率。 众所周知, 回收率构成一套简单功能的固定点, 而这些固定点可能是不合理的。 此外, Schuldenzucker 等人( 2016) 已经表明, 找到一个薄弱( 或“ 几乎” ) 的近似( ) 固定点是完整的。 我们从不合理性和近似实力的角度进一步研究了清算问题。 首先, 我们发现, 薄弱的解决方案可能扭曲一个机构的实际财务状况。 在此基础上, 我们研究找到一个强烈( 或“ 接近 ” ) 的近似点的解决方案的复杂性, 并显示 FIXP 的完全性。 我们随后研究了不合理性所需的结构属性, 我们为出现不合理性解决方案提供了必要的条件: 我们从不合理性解决方案的外部的周期中找到一个固定的周期, 我们的固定周期的固定周期, 我们的固定的周期的固定周期, 我们的周期的固定周期将显示一个固定的周期的周期的固定的周期的周期的固定的周期的周期的固定的周期的周期以直为固定式的周期, 。