The prevalence of large-scale graphs poses great challenges in time and storage for training and deploying graph neural networks (GNNs). Several recent works have explored solutions for pruning the large original graph into a small and highly-informative one, such that training and inference on the pruned and large graphs have comparable performance. Although empirically effective, current researches focus on static or non-temporal graphs, which are not directly applicable to dynamic scenarios. In addition, they require labels as ground truth to learn the informative structure, limiting their applicability to new problem domains where labels are hard to obtain. To solve the dilemma, we propose and study the problem of unsupervised graph pruning on dynamic graphs. We approach the problem by our proposed STEP, a self-supervised temporal pruning framework that learns to remove potentially redundant edges from input dynamic graphs. From a technical and industrial viewpoint, our method overcomes the trade-offs between the performance and the time & memory overheads. Our results on three real-world datasets demonstrate the advantages on improving the efficacy, robustness, and efficiency of GNNs on dynamic node classification tasks. Most notably, STEP is able to prune more than 50% of edges on a million-scale industrial graph Alipay (7M nodes, 21M edges) while approximating up to 98% of the original performance. Code is available at https://github.com/EdisonLeeeee/STEP.
翻译:暂无翻译