The widely used 'Counterfactual' definition of Causal Effects was derived for unbiasedness and accuracy - and not generalizability. We propose a simple definition for the External Validity (EV) of interventions and counterfactuals. The definition leads to EV statistics for individual counterfactuals, and to non-parametric effect estimators for sets of counterfactuals (i.e., for samples). We use this definition to discuss several issues that have baffled the original counterfactual formulation: out-of-sample validity, reliance on independence assumptions or estimation, concurrent estimation of multiple effects and full-models, bias-variance tradeoffs, statistical power, omitted variables, and connections to current predictive and explaining techniques. Methodologically, the definition also allows us to replace the parametric, and generally ill-posed, estimation problems that followed the counterfactual definition by combinatorial enumeration problems in non-experimental samples. We use this framework to generalize popular supervised, explaining, and causal-effect estimators, improving their performance across three dimensions (External Validity, Unconfoundness and Accuracy), and enabling their use in non-i.i.d. samples. We demonstrate gains in out-of-sample prediction, intervention effect prediction, and causal effect estimation tasks. The COVID19 pandemic highlighted the need for learning solutions to provide general predictions in small samples - many times with missing variables. We also demonstrate applications in this pressing problem.
翻译:广泛使用的“ 间接事实” 定义的“ 因果关系” 定义用于公正性和准确性,而不是一般性。 我们提出干预和反事实的外部有效性(EV) 的简单定义。 定义导致个人反事实的 EV 统计数据, 以及一系列反事实(例如,样本)的非参数性效果估计器。 我们使用这个定义来讨论一些使最初反事实提法产生混淆的问题: 超出抽样的有效性, 依赖独立假设或估计, 同时估计多重影响和全模型、 偏差交易、 统计力量、 省略变量以及与当前预测和解释技术的连接。 从方法上讲, 定义还使我们能够用非解释性抽样调查问题来取代反事实定义之后的参数性、 一般错误估计问题。 我们使用这个框架来普及大众监督、解释和因果关系估测器, 改善其在三个层面的绩效( 外部有效性、 不确定性、 遗漏变量、 以及 与当前预测方法的关联性预测 ) 。 我们用这个框架来展示其非预测性效果 。</s>