Probabilistic graphical models (PGMs) are powerful tools for solving systems of complex relationships over a variety of probability distributions. However, while tree-structured PGMs always result in efficient and exact solutions, inference on graph (or loopy) structured PGMs is not guaranteed to discover the optimal solutions. It is in principle possible to convert loopy PGMs to an equivalent tree structure, but this is usually impractical for interesting problems due to exponential blow-up. To address this, we developed the purge-and-merge algorithm. This algorithm iteratively nudges a malleable graph structure towards a tree structure by selectively merging factors. The merging process is designed to avoid exponential blow-up by way of sparse structures from which redundancy is purged as the algorithm progresses. We set up tasks to test the algorithm on constraint-satisfaction puzzles such as Sudoku, Fill-a-pix, and Kakuro, and it outperformed other PGM-based approaches reported in the literature. While the tasks we set focussed on the binary logic of CSP, we believe the purge-and-merge algorithm could be extended to general PGM inference.
翻译:概率图形模型( PGM ) 是解决各种概率分布的复杂关系体系的强大工具。 然而, 虽然树结构的 PGM 总是能产生高效和精确的解决方案, 但是在图形( 或环状) 结构化 PGM 上的推论并不能保证找到最佳的解决方案。 原则上可以将环状 PGM 转换成一个相等的树结构, 但对于指数爆炸带来的有趣问题来说, 这通常是不切实际的。 为了解决这个问题, 我们开发了清洗和合并算法。 这种演算法通过选择性的合并因素将可移动的图形结构推向树结构。 合并过程旨在避免通过稀疏结构的加速打击, 其冗余随着算法的进展被清除。 我们设置了任务, 测试限制- 满意度拼图的算法, 如数库、 Fill- a- pix 和 Kakuro, 等, 并且它比文献中报告的其他以PGMM为基础的方法要差。 虽然我们设置的任务以 CSP 的二进逻辑为焦点, 但我们认为, urge- 和merge- mage 的算法可以扩展为一般。