Motivated by a question of Farhi et al. [arXiv:1910.08187, 2019], we study the limitations of the Quantum Approximate Optimization Algorithm (QAOA) and show that there exists $\epsilon > 0$, such that $\epsilon\log(n)$ depth QAOA cannot arbitrarily-well approximate boolean constraint satisfaction problems as long as the problem satisfies a combinatorial property from statistical physics called the coupled overlap-gap property (OGP) [Chen et al., Annals of Probability, 47(3), 2019]. We show that the random \kxors{} problem has this property when $k\geq4$ is even by extending the corresponding result for diluted $k$-spin glasses. As a consequence of our techniques, we confirm a conjecture of Brandao et al. [arXiv:1812.04170, 2018] asserting that the landscape independence of QAOA extends to logarithmic depth -- in other words, for every fixed choice of QAOA angle parameters, the algorithm at logarithmic depth performs almost equally well on almost all instances. Our results provide a new way to study the power and limit of QAOA through statistical physics methods and combinatorial properties.


翻译:受Farhi等人[arXiv:191008187, 20199] 问题的驱使,我们研究了Quantum Apjearn Apractimization Agorithm (QAOA) 的局限性,并表明存在美元=epsilon > 0美元,因此QAOA(n) 美元深度无法任意地-很好地估算布尔林抑制因素的满意度问题,只要问题满足统计物理学的组合属性,称为重叠加普属性(OGP)[Chen et al., Anals of Probility,47(3), 20199]。我们表明,当 $\k\ge4美元甚至通过扩大稀释美元正皮眼镜的相应结果,随机的\kxorsá问题就具有这一属性。由于我们的技术,我们证实了Brandao et al.[arXiv:1812.04170, 201818] 的缩称,QA的景观独立性延伸到了对QOA的深度 -- 几乎从其他语言深度上对A 进行精确的对A 进行精确的精确的对数分析,对A 进行A 和对结果的每一个的精确的精确的精确的计算。

0
下载
关闭预览

相关内容

专知会员服务
103+阅读 · 2021年8月23日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
84+阅读 · 2020年12月5日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【干货】2019年国际学术会议资讯 (含截稿日期)
中国自动化学会
9+阅读 · 2018年11月5日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2022年1月7日
Arxiv
0+阅读 · 2022年1月5日
Arxiv
0+阅读 · 2022年1月5日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
专知会员服务
103+阅读 · 2021年8月23日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
84+阅读 · 2020年12月5日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【干货】2019年国际学术会议资讯 (含截稿日期)
中国自动化学会
9+阅读 · 2018年11月5日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员