The Poisson-Nernst-Planck (PNP) equations are one of the most effective model for describing electrostatic interactions and diffusion processes in ion solution systems, and have been widely used in the numerical simulations of biological ion channels, semiconductor devices, and nanopore systems. Due to the characteristics of strong coupling, convection dominance, nonlinearity and multiscale, the classic Gummel iteration for the nonlinear discrete system of PNP equations converges slowly or even diverges. We focus on fast algorithms of nonlinear discrete system for the general PNP equations, which have better adaptability, friendliness and efficiency than the Gummel iteration. First, a geometric full approximation storage (FAS) algorithm is proposed to improve the slow convergence speed of the Gummel iteration. Second, an algebraic FAS algorithm is designed, which does not require multi-level geometric information and is more suitable for practical computation compared with the geometric one. Finally, improved algorithms based on the acceleration technique and adaptive method are proposed to solve the problems of excessive coarse grid iterations and insufficient adaptability to the size of computational domain in the algebraic FAS algorithm. The numerical experiments are shown for the geometric, algebraic FAS and improved algorithms respectively to illustrate the effiency of the algorithms.
翻译:暂无翻译