We develop an elementary method to compute spaces of equivariant maps from a homogeneous space of a Lie group to a module of this group. The Lie group is not required to be compact. More generally we study spaces of invariant sections in homogeneous vector bundles, and take a special interest in the case where the fibres are algebras. This latter case has a natural global algebra structure. We classify the resulting automorphic algebras for the case where the homogeneous space has compact stabilisers. This work has applications in the theoretical development of geometric deep learning and also in the theory of automorphic Lie algebras.
翻译:我们开发了一种基本方法来计算等同地图的空间,从一个 Lie 组的同质空间到这个组的模块。 Lie 组不需要紧凑。 更一般地说, 我们研究同质矢量捆绑中的异差部分空间, 并特别关注纤维是代数的情况。 后一种情况具有天然的全球代数结构。 我们为同一空间有紧凑稳定器的情况对由此产生的自动定值代数进行分类。 这项工作在几何深层学习的理论发展以及自态测深理论中也有应用。</s>