We present a new approach for learning unsupervised node representations in community graphs. We significantly extend the Interferometric Graph Transform (IGT) to community labeling: this non-linear operator iteratively extracts features that take advantage of the graph topology through demodulation operations. An unsupervised feature extraction step cascades modulus non-linearity with linear operators that aim at building relevant invariants for community labeling. Via a simplified model, we show that the IGT concentrates around the E-IGT: those two representations are related through some ergodicity properties. Experiments on community labeling tasks show that this unsupervised representation achieves performances at the level of the state of the art on the standard and challenging datasets Cora, Citeseer, Pubmed and WikiCS.
翻译:我们提出了一个在社区图表中学习不受监督的节点代表的新方法。 我们大大扩展了Interferome Graph 变换(IGT)到社区标签:这个非线性操作员通过演示操作利用图形表层学的迭代提取特征。 一个未经监督的地貌提取步骤级联模异性与线性操作员的非线性,目的是为社区标签建立相关的变量。 通过一个简化模型,我们显示IGT集中在E-IGT周围:这两个表态与某些性格特性有关。关于社区标签任务的实验显示,这种未经监督的表示方式在科拉、台塞、普布米德和维基科斯等州一级取得了标准化和具有挑战性的数据元件的成绩。