There are a multitude of emerging imaging technologies that could benefit robotics. However the need for bespoke models, calibration and low-level processing represents a key barrier to their adoption. In this work we present NOCaL, Neural odometry and Calibration using Light fields, a semi-supervised learning architecture capable of interpreting previously unseen cameras without calibration. NOCaL learns to estimate camera parameters, relative pose, and scene appearance. It employs a scene-rendering hypernetwork pretrained on a large number of existing cameras and scenes, and adapts to previously unseen cameras using a small supervised training set to enforce metric scale. We demonstrate NOCaL on rendered and captured imagery using conventional cameras, demonstrating calibration-free odometry and novel view synthesis. This work represents a key step toward automating the interpretation of general camera geometries and emerging imaging technologies.
翻译:有很多新的成像技术可以让机器人受益。 但是,需要定制模型、校准和低级处理是采用这些模型的关键障碍。 在这项工作中,我们展示了使用光场的NOCAL、神经测量和校准,这是一个半受监督的学习结构,能够不经校准解释以前看不见的相机。NOCAL学会了估计相机参数、相对面貌和场景外观。它使用一个现场复制的超网络,在大量现有的照相机和场景上进行了预先训练,并使用一个小型的监控训练装置对以前看不见的照相机进行了调整,以实施测量尺度。我们展示了使用常规照相机制作和拍摄的图像的NOCAL,演示了无校准的odo度和新颖的视觉合成。 这项工作代表了对普通相机的几何和新兴成像技术进行自动解释的关键步骤。