A classical result by Schoenberg (1942) identifies all real-valued functions that preserve positive semidefiniteness (psd) when applied entrywise to matrices of arbitrary dimension. Schoenberg's work has continued to attract significant interest, including renewed recent attention due to applications in high-dimensional statistics. However, despite a great deal of effort in the area, an effective characterization of entrywise functions preserving positivity in a fixed dimension remains elusive to date. As a first step, we characterize new classes of polynomials preserving positivity in fixed dimension. The proof of our main result is representation theoretic, and employs Schur polynomials. An alternate, variational approach also leads to several interesting consequences including (a) a hitherto unexplored Schubert cell-type stratification of the cone of psd matrices, (b) new connections between generalized Rayleigh quotients of Hadamard powers and Schur polynomials, and (c) a description of the joint kernels of Hadamard powers.
翻译:Schoenberg(1942年)的经典成果是,Schoenberg(1942年)确定了在应用任意性矩阵时保持正半确定性(psd)的所有真正价值功能(psd),Schoenberg的工作继续吸引了极大的兴趣,包括最近由于在高维统计中的应用而重新引起注意,然而,尽管该地区作出了巨大努力,迄今仍难以有效地描述在固定维度上保持正正准的初始功能。作为第一步,我们将新的多面体类别定性为在固定维度上保持正正准的新型多面体。我们的主要结果的证明是表达理论,并使用Schur 聚诺米亚。一种替代的变式方法还导致若干有趣的后果,包括:(a) 迄今尚未探索的 Schubert 细胞类型对psd 基质的描述,(b) Hadamard 权力和Schur 聚点之间的新联系,以及(c) Hadmard权力联合核心的描述。