We propose a machine learning framework based on the next-generation Equation-Free algorithm for learning the spatio-temporal dynamics of mass-constrained complex systems with hidden states, whose dynamics can in principle be described by PDEs, but lack explicit models. In these cases, some variables, closures, and potentials governing the dynamics are generally not directly observable and therefore must be inferred from data. Here, we construct manifold-ROMs -- using delayed coordinates, thus exploiting the Takens'/Whitney's embedding theorems. In the first stage, we employ both linear (POD) and nonlinear manifold learning (Diffusion Maps, DMs) to extract low-dimensional latent representations of the complex spatio-temporal evolution. In the second step, we learn predictive manifold-informed ROMs to approximate the solution operator on the latent space. In the final step, the latent dynamics are lifted back to the original high-dimensional space by solving a pre-image problem. We prove that both POD and the particular $k$-nearest neighbors lifting operators preserve the mass, a crucial property in the context of many problems, including computational fluid dynamics (CFD) and crowd dynamics. Actually, the proposed framework reconstructs the solution operator of the unavailable mass-constrained PDE, bypassing the need to discover an explicit form of the PDE per se. We demonstrate our approach via the Hughes model, approximating the dynamics of individuals minimizing travel time while avoiding obstacles and high-density regions. We show that DMs-informed ROMs outperform the best POD-informed ROMs thus resulting in stable and accurate approximations of the solution operator both in the latent space and, via reconstruction, in the high-dimensional space, and can therefore be integrated reliably over long time horizons.
翻译:我们提出了一种基于下一代无方程算法的机器学习框架,用于学习具有隐状态且质量守恒的复杂系统的时空动力学。这类系统的动力学原则上可以用偏微分方程描述,但缺乏显式模型。在这些情况下,控制动力学的一些变量、闭合项和势函数通常无法直接观测,因此必须从数据中推断。本文中,我们构建流形降阶模型——通过使用延迟坐标,从而利用Takens/Whitney嵌入定理。在第一阶段,我们同时采用线性方法(本征正交分解)和非线性流形学习(扩散映射)来提取复杂时空演化的低维潜在表示。在第二步中,我们学习预测性的流形感知降阶模型,以近似潜在空间上的解算子。在最后一步,通过求解原像问题将潜在动力学提升回原始高维空间。我们证明了本征正交分解和特定的k近邻提升算子均能保持质量守恒,这是包括计算流体力学和人群动力学在内的许多问题中的关键性质。实际上,所提出的框架重构了未知质量守恒偏微分方程的解算子,从而绕过了发现偏微分方程显式形式本身的需求。我们通过Hughes模型验证了我们的方法,该模型近似描述了在避开障碍物和高密度区域的同时最小化行程时间的个体动力学。我们证明,扩散映射感知的降阶模型优于最佳的本征正交分解感知降阶模型,从而在潜在空间以及通过重构在高维空间中都能得到稳定且精确的解算子近似,因此可以在长时间尺度上进行可靠的积分。