We apply topological data analysis methods to loss functions to gain insights into learning of deep neural networks and deep neural networks generalization properties. We use the Morse complex of the loss function to relate the local behavior of gradient descent trajectories with global properties of the loss surface. We define the neural network Topological Obstructions score, "TO-score", with the help of robust topological invariants, barcodes of the loss function, that quantify the "badness" of local minima for gradient-based optimization. We have made experiments for computing these invariants for fully-connected, convolutional and ResNet-like neural networks on different datasets: MNIST, Fashion MNIST, CIFAR10, CIFAR100 and SVHN. Our two principal observations are as follows. Firstly, the neural network barcode and TO score decrease with the increase of the neural network depth and width, thus the topological obstructions to learning diminish. Secondly, in certain situations there is an intriguing connection between the lengths of minima segments in the barcode and the minima generalization errors.
翻译:我们运用地形数据分析方法来分析损失功能,以深入了解深神经网络和深神经网络的一般特性。我们利用损失功能的摩斯综合体将渐渐下降轨迹的当地行为与损失表面的全球特性联系起来。我们定义了神经网络的地形障碍评分,即“TO-score”,在坚固的地形变异物的帮助下,“TO-score”是损失函数的条码,以量化当地微型微粒的“坏坏”来进行梯度优化。我们进行了实验,将这些变异物计算成完全连接的、动态的和ResNet相似的神经网络。我们在不同数据集上进行了计算:MNIST、Fashon MNIST、CIFAR10、CIFAR100和SVHN。我们的主要观察如下。首先,神经网络条码和分数随着神经网络深度和宽度的增加而减少,从而缩小了表层障碍。第二,在某些情况下,在条形条码中的微型段长度和微型一般错误之间出现了令人触动的连接。