Ship detection in aerial images remains an active yet challenging task due to arbitrary object orientation and complex background from a bird's-eye perspective. Most of the existing methods rely on angular prediction or predefined anchor boxes, making these methods highly sensitive to unstable angular regression and excessive hyper-parameter setting. To address these issues, we replace the angular-based object encoding with an anchor-and-angle-free paradigm, and propose a novel detector deploying a center and four midpoints for encoding each oriented object, namely MidNet. MidNet designs a symmetrical deformable convolution customized for enhancing the midpoints of ships, then the center and midpoints for an identical ship are adaptively matched by predicting corresponding centripetal shift and matching radius. Finally, a concise analytical geometry algorithm is proposed to refine the centers and midpoints step-wisely for building precise oriented bounding boxes. On two public ship detection datasets, HRSC2016 and FGSD2021, MidNet outperforms the state-of-the-art detectors by achieving APs of 90.52% and 86.50%. Additionally, MidNet obtains competitive results in the ship detection of DOTA.


翻译:航空图像中的船舶探测仍然是一项积极但具有挑战性的任务,因为任意的物体定向和从鸟眼角度看复杂的背景仍然是一项积极而富有挑战性的任务。大多数现有方法依靠角预测或预设的锚箱,使这些方法对不稳定的角回归和过度的超参数设置高度敏感。为了解决这些问题,我们用一个无锚和角模式来取代基于角的物体编码,并提议用一个新的探测器为每个面向编码的物体(即MidNet)部署一个中心和四个中点。MidNet设计了一个对称的、可变化的演算法,专门用来提高船舶的中点,然后对同一艘船舶的中心和中点进行适应性匹配,预测相应的中子转移和中点。最后,建议用一个简明的分析几何算算法来改进中心和中点,以便建立精确定向的捆绑框。在两个公共船舶探测数据集(HRSC2016和FGSD2021)上,MidNet将一个最先进的探测器比近于达到90.52%和86.50%的AP。此外,MidNet在船舶探测中标中获得了竞争性的结果。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年9月16日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人脸检测库:libfacedetection
Python程序员
15+阅读 · 2019年3月22日
已删除
将门创投
3+阅读 · 2019年1月15日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关资讯
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人脸检测库:libfacedetection
Python程序员
15+阅读 · 2019年3月22日
已删除
将门创投
3+阅读 · 2019年1月15日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员