The space-air-ground integrated network (SAGIN) is dynamic and flexible, which can support transmitting data in environments lacking ground communication facilities. However, the nodes of SAGIN are heterogeneous and it is intractable to share the resources to provide multiple services. Therefore, in this paper, we consider using network function virtualization technology to handle the problem of agile resource allocation. In particular, the service function chains (SFCs) are constructed to deploy multiple virtual network functions of different tasks. To depict the dynamic model of SAGIN, we propose the reconfigurable time extension graph. Then, an optimization problem is formulated to maximize the number of completed tasks, i.e., the successful deployed SFC. It is a mixed integer linear programming problem, which is hard to solve in limited time complexity. Hence, we transform it as a many-to-one two-sided matching game problem. Then, we design a Gale-Shapley based algorithm. Finally, via abundant simulations, it is verified that the designed algorithm can effectively deploy SFCs with efficient resource utilization.


翻译:空空-地综合网络(SAGIN)是动态和灵活的,可以支持在缺乏地面通信设施的环境中传输数据。然而,SAGIN的节点是多种多样的,分享提供多种服务的资源很难解决。因此,在本文件中,我们考虑使用网络功能虚拟化技术来处理灵活分配资源的问题。特别是,服务功能链(SFCs)是为了部署不同任务的多个虚拟网络功能而建造的。为了描述SAGIN的动态模型,我们建议了可重新配置的时间扩展图。然后,形成了一个优化问题,以最大限度地增加已完成的任务的数量,即成功部署的SFC。这是一个混合的线性线性编程问题,很难在有限的时间内解决。因此,我们把它转换成一个多到一对一的双对齐游戏问题。然后,我们设计了一个基于不同任务的Gale-Shapley算法。最后,通过大量的模拟,我们核实了设计算法能够有效地部署有高效率的资源利用的SFCs。</s>

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
82+阅读 · 2022年7月16日
Arxiv
35+阅读 · 2021年8月2日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员