Preferential attachment is commonly invoked to explain the emergence of those heavy-tailed degree distributions characteristic of growing network representations of divers real-world phenomena. Experimentally confirming this hypothesis in real-world growing networks is an important frontier in network science research. Conventional preferential attachment estimation methods require that a growing network be observed across at least two snapshots in time. Numerous publicly available growing network datasets are, however, only available as single snapshots, leaving the applied network scientist with no means of measuring preferential attachment in these cases. We propose a nonparametric method, called PAFit-oneshot, for estimating preferential attachment in a growing network from one snapshot. PAFit-oneshot corrects for a previously unnoticed bias that arises when estimating preferential attachment values only for degrees observed in the single snapshot. Our work provides a means of measuring preferential attachment in a large number of publicly available one-snapshot networks. As a demonstration, we estimated preferential attachment in three such networks, and found sublinear preferential attachment in all cases. PAFit-oneshot is implemented in the R package PAFit.
翻译:通常会援引优惠附加物来解释这些高尾量分布特征的出现,这些特征是潜水员不断壮大的现实世界现象的网络代表性日益增强。在现实世界增长的网络中,试验性地证实这一假设是网络科学研究的一个重要前沿。常规优惠附加物估计方法要求至少对两个快照及时观测不断增长的网络。然而,大量公开提供的网络数据集只能作为单一快照提供,使应用网络科学家无法在这些案例中衡量优惠附加物。我们建议采用非参数方法,称为PAFit-oneshot,从一个快照中估计在成长的网络中的优惠附加物。PAFit-oneshot纠正了在对单一快照中只观察的度估计优惠附加物值时出现的先前未注意到的偏见。我们的工作提供了一种测量大量公开提供的一粒子网络中优惠附加物的手段。作为示范,我们估计在三个这类网络中存在优惠附加物,并在所有案例中发现子线性优惠附加物。PAFit-1shot在R包PAFit中实施。