A dimension reduction method based on the "Nonlinear Level set Learning" (NLL) approach is presented for the pointwise prediction of functions which have been sparsely sampled. Leveraging geometric information provided by the Implicit Function Theorem, the proposed algorithm effectively reduces the input dimension to the theoretical lower bound with minor accuracy loss, providing a one-dimensional representation of the function which can be used for regression and sensitivity analysis. Experiments and applications are presented which compare this modified NLL with the original NLL and the Active Subspaces (AS) method. While accommodating sparse input data, the proposed algorithm is shown to train quickly and provide a much more accurate and informative reduction than either AS or the original NLL on two example functions with high-dimensional domains, as well as two state-dependent quantities depending on the solutions to parametric differential equations.
翻译:基于“非线性级学习”方法的维度削减方法,用于对很少取样的功能进行有分点的预测。 利用由隐性函数理论提供的几何信息,拟议的算法有效地减少了理论下限的输入维度,并减少了少量精确度损失,为可用于回归和敏感度分析的功能提供了一维表示。 实验和应用将这一修改的NLL与原NLL和主动子空间方法进行比较。 在容纳少量输入数据的同时,拟议的算法显示,与AS或原NLL值相比,在具有高维度域的两个示例函数上,快速培训并提供比AS或原始NLLL值更准确和更多的信息减少量,以及两个取决于参数差异方程解决方案的州内数量。