We study the problem of estimating a functional or a parameter in the context where outcome is subject to nonignorable missingness. We completely avoid modeling the regression relation, while allowing the propensity to be modeled by a semiparametric logistic relation where the dependence on covariates is unspecified. We discover a surprising phenomenon in that the estimation of the parameter in the propensity model as well as the functional estimation can be carried out without assessing the missingness dependence on covariates. This allows us to propose a general class of estimators for both model parameter estimation and functional estimation, including estimating the outcome mean. The robustness of the estimators are nonstandard and are established rigorously through theoretical derivations, and are supported by simulations and a data application.


翻译:我们研究在结果不可忽略的情况下估计功能或参数的问题。 我们完全避免模拟回归关系,同时允许在依赖共差的半对数后勤关系中以对共差的依赖性为模型进行模拟。 我们发现一个令人惊讶的现象,即在不评估对共差的依赖性的情况下,可以对偏差模型中的参数和功能估计进行估计,而不必评估对共差的缺失性依赖性。这使我们能够为模型参数估计和功能估计,包括估计结果平均值,提出一个一般的估测者类别。估计者的稳健性是非标准性的,通过理论推论严格确立,并得到模拟和数据应用的支持。

0
下载
关闭预览

相关内容

专知会员服务
29+阅读 · 2021年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
60+阅读 · 2020年5月9日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
专知会员服务
62+阅读 · 2020年3月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Many Proxy Controls
Arxiv
0+阅读 · 2021年10月8日
Arxiv
0+阅读 · 2021年10月7日
Arxiv
4+阅读 · 2018年4月29日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员