The multivariate regression model basically offers the analysis of a single dataset with multiple responses. However, such a single-dataset analysis often leads to unsatisfactory results. Integrative analysis is an effective method to pool useful information from multiple independent datasets and provides better performance than single-dataset analysis. In this study, we propose a multivariate regression modeling in integrative analysis. The integration is achieved by sparse estimation that performs variable and group selection. Based on the idea of alternating direction method of multipliers, we develop its computational algorithm that enjoys the convergence property. The performance of the proposed method is demonstrated through Monte Carlo simulation and analyzing wastewater treatment data with microbe measurements.
翻译:多元回归模型基本上提供了对具有多个响应的单个数据集的分析。然而,这种单个数据集的分析通常会导致不令人满意的结果。综合分析是一种有效的方法,可以从多个独立的数据集中汇集有用的信息,并提供比单个数据集分析更好的性能。在本研究中,我们提出了一种多元回归建模在综合分析中的应用。集成是通过稀疏估计来实现变量和组选择。基于多重因果方法的思想,我们开发了其计算算法,具有收敛性质。所提出方法的性能通过蒙特卡罗模拟和对微生物测量的废水处理数据进行分析来证明。