Making informed driving decisions requires reliable prediction of other vehicles' trajectories. In this paper, we present a novel learned multi-modal trajectory prediction architecture for automated driving. It achieves kinematically feasible predictions by casting the learning problem into the space of accelerations and steering angles -- by performing action-space prediction, we can leverage valuable model knowledge. Additionally, the dimensionality of the action manifold is lower than that of the state manifold, whose intrinsically correlated states are more difficult to capture in a learned manner. For the purpose of action-space prediction, we present the simple Feed-Forward Action-Space Prediction (FFW-ASP) architecture. Then, we build on this notion and introduce the novel Self-Supervised Action-Space Prediction (SSP-ASP) architecture that outputs future environment context features in addition to trajectories. A key element in the self-supervised architecture is that, based on an observed action history and past context features, future context features are predicted prior to future trajectories. The proposed methods are evaluated on real-world datasets containing urban intersections and roundabouts, and show accurate predictions, outperforming state-of-the-art for kinematically feasible predictions in several prediction metrics.
翻译:做出知情的驾驶决定需要可靠地预测其他飞行器的轨迹。 在本文中, 我们为自动驾驶提出了一个新颖的、 学习的多模式轨迹预测结构。 通过将学习问题投放到加速和方向角度的空间中, 我们能够利用宝贵的模型知识。 此外, 行动方的维度比州方形要低, 其内在关联状态更难以学习的方式捕捉。 为了行动空间预测的目的, 我们展示了一个简单的Feed- Forward行动空间预测(FFW-ASP)结构。 然后, 我们在这个概念上再接再厉, 并推出新的自超超行动空间预测(SSP-ASP)结构, 将未来环境作为轨迹外的外观。 自我监督架构的一个关键要素是, 根据观察的行动历史和过去背景特征, 未来背景特征在未来的轨迹前被预测。 拟议的方法是在包含城市交叉点和全局预测的实时世界数据集上进行评估, 并显示若干准确的模型预测。