From an optimizer's perspective, achieving the global optimum for a general nonconvex problem is often provably NP-hard using the classical worst-case analysis. In the case of Cox's proportional hazards model, by taking its statistical model structures into account, we identify local strong convexity near the global optimum, motivated by which we propose to use two convex programs to optimize the folded-concave penalized Cox's proportional hazards regression. Theoretically, we investigate the statistical and computational tradeoffs of the proposed algorithm and establish the strong oracle property of the resulting estimators. Numerical studies and real data analysis lend further support to our algorithm and theory.
翻译:从优化者的角度来说,利用典型的最坏情况分析,实现普遍非混凝土问题的全球最佳效果往往很难用传统最坏情况分析。 在Cox的成比例危害模型中,我们通过考虑其统计模型结构,确定了接近全球最佳的当地强强的细度,我们以此为动机提议使用两个成比例的细度程序优化折叠子对Cox的成比例危害回归。理论上,我们调查了拟议算法的统计和计算取舍,并确定了由此产生的估量者的强项。数字研究和真实数据分析为我们的算法和理论提供了进一步的支持。