We demonstrate a backdoor attack on a deep neural network used for regression. The backdoor attack is localized based on training-set data poisoning wherein the mislabeled samples are surrounded by correctly labeled ones. We demonstrate how such localization is necessary for attack success. We also study the performance of a backdoor defense using gradient-based discovery of local error maximizers. Local error maximizers which are associated with significant (interpolation) error, and are proximal to many training samples, are suspicious. This method is also used to accurately train for deep regression in the first place by active (deep) learning leveraging an "oracle" capable of providing real-valued supervision (a regression target) for samples. Such oracles, including traditional numerical solvers of PDEs or SDEs using finite difference or Monte Carlo approximations, are far more computationally costly compared to deep regression.
翻译:我们展示了对用于回归的深层神经网络的后门攻击。 后门攻击基于培训数据中毒, 错误标签的样本被贴上正确的标签。 我们演示了这种定位对于袭击成功的必要性。 我们还利用基于梯度的局部误差最大化器来研究后门防御的性能。 与重大( 内插) 误差相关的本地误差最大化器是可疑的, 并且接近于许多培训样本。 这种方法也被用来精确地训练如何通过主动( 深) 学习为样本提供真正价值监督( 回归目标) 的“ 孔” 来进行深层后方回归 。 与深度回归相比, 包括使用有限差异或 Monte Carlo 近似值的PDE 或 SDE 传统数字解算器在内的这些神器在计算上的成本要高得多 。