We demonstrate a backdoor attack on a deep neural network used for regression. The backdoor attack is localized based on training-set data poisoning wherein the mislabeled samples are surrounded by correctly labeled ones. We demonstrate how such localization is necessary for attack success. We also study the performance of a backdoor defense using gradient-based discovery of local error maximizers. Local error maximizers which are associated with significant (interpolation) error, and are proximal to many training samples, are suspicious. This method is also used to accurately train for deep regression in the first place by active (deep) learning leveraging an "oracle" capable of providing real-valued supervision (a regression target) for samples. Such oracles, including traditional numerical solvers of PDEs or SDEs using finite difference or Monte Carlo approximations, are far more computationally costly compared to deep regression.


翻译:我们展示了对用于回归的深层神经网络的后门攻击。 后门攻击基于培训数据中毒, 错误标签的样本被贴上正确的标签。 我们演示了这种定位对于袭击成功的必要性。 我们还利用基于梯度的局部误差最大化器来研究后门防御的性能。 与重大( 内插) 误差相关的本地误差最大化器是可疑的, 并且接近于许多培训样本。 这种方法也被用来精确地训练如何通过主动( 深) 学习为样本提供真正价值监督( 回归目标) 的“ 孔” 来进行深层后方回归 。 与深度回归相比, 包括使用有限差异或 Monte Carlo 近似值的PDE 或 SDE 传统数字解算器在内的这些神器在计算上的成本要高得多 。

0
下载
关闭预览

相关内容

【WWW2021】 大规模组合K推荐
专知会员服务
44+阅读 · 2021年5月3日
Python编程基础,121页ppt
专知会员服务
49+阅读 · 2021年1月1日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
45+阅读 · 2020年10月31日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Logistic回归第二弹——Softmax Regression
机器学习深度学习实战原创交流
9+阅读 · 2015年10月29日
Arxiv
0+阅读 · 2021年10月25日
Arxiv
14+阅读 · 2020年10月26日
VIP会员
相关VIP内容
【WWW2021】 大规模组合K推荐
专知会员服务
44+阅读 · 2021年5月3日
Python编程基础,121页ppt
专知会员服务
49+阅读 · 2021年1月1日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
45+阅读 · 2020年10月31日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Logistic回归第二弹——Softmax Regression
机器学习深度学习实战原创交流
9+阅读 · 2015年10月29日
Top
微信扫码咨询专知VIP会员