The graphon (W-graph), including the stochastic block model as a special case, has been widely used in modeling and analyzing network data. This random graph model is well-characterized by its graphon function, and estimation of the graphon function has gained a lot of recent research interests. Most existing works focus on community detection in the latent space of the model, while adopting simple maximum likelihood or Bayesian estimates for the graphon or connectivity parameters given the identified communities. In this work, we propose a hierarchical Binomial model and develop a novel empirical Bayes estimate of the connectivity matrix of a stochastic block model to approximate the graphon function. Based on the likelihood of our hierarchical model, we further introduce a model selection criterion for choosing the number of communities. Numerical results on extensive simulations and two well-annotated social networks demonstrate the superiority of our approach in terms of estimation accuracy and model selection.
翻译:石墨(W-graph),包括作为特例的石墨区块模型,已被广泛用于网络数据建模和分析。这个随机图形模型因其石墨功能而具有清晰的特征,对石墨函数的估算最近引起了许多研究兴趣。大多数现有工作的重点是在模型潜在空间的社区探测,同时对图形或连接参数采用简单的最大可能性或贝叶斯估计值,给所查明的社区提供。在这项工作中,我们提议了一个分级的Binomial模型,并对一个石墨区块模型的连接性矩阵进行创新的经验性贝斯估计,以近似图形功能。根据我们等级模型的可能性,我们进一步引入了选择社区数目的模型选择标准。关于广泛模拟和两个注释良好的社会网络的数值结果显示了我们在估算准确性和模型选择方面的做法的优越性。