We study first-order optimization algorithms under the constraint that the descent direction is quantized using a pre-specified budget of $R$-bits per dimension, where $R \in (0 ,\infty)$. We propose computationally efficient optimization algorithms with convergence rates matching the information-theoretic performance lower bounds for: (i) Smooth and Strongly-Convex objectives with access to an Exact Gradient oracle, as well as (ii) General Convex and Non-Smooth objectives with access to a Noisy Subgradient oracle. The crux of these algorithms is a polynomial complexity source coding scheme that embeds a vector into a random subspace before quantizing it. These embeddings are such that with high probability, their projection along any of the canonical directions of the transform space is small. As a consequence, quantizing these embeddings followed by an inverse transform to the original space yields a source coding method with optimal covering efficiency while utilizing just $R$-bits per dimension. Our algorithms guarantee optimality for arbitrary values of the bit-budget $R$, which includes both the sub-linear budget regime ($R < 1$), as well as the high-budget regime ($R \geq 1$), while requiring $O\left(n^2\right)$ multiplications, where $n$ is the dimension. We also propose an efficient relaxation of this coding scheme using Hadamard subspaces that requires a near-linear time, i.e., $O\left(n \log n\right)$ additions.Furthermore, we show that the utility of our proposed embeddings can be extended to significantly improve the performance of gradient sparsification schemes. Numerical simulations validate our theoretical claims. Our implementations are available at https://github.com/rajarshisaha95/DistOptConstrComm.


翻译:我们研究第一级优化算法, 其限制是, 下端方向使用预先指定的每维的 R$- bit 预算, 即 $R = $( 0,\ infty) 美元。 我们提议计算高效优化算法, 其趋同率与信息- 理论性能较低界限匹配:(i) 平滑和强烈的Convex 目标, 并访问Exact Gratient oracle, 以及(ii) General Convex and Non- Smoth 目标, 并可以访问 noisy Subgradition Subgradition 。 这些算法的柱状是一个多元复杂的源代码, 将矢量嵌嵌入一个随机的子空间, 在量化前, 这些嵌入, 它们与变换空间的任何罐方向相匹配。 因此, 将这些嵌入的嵌入, 向原始空间逆变形转换后, 将产生一种来源编码方法, 覆盖效率, 同时仅使用 $ $ 美元 的 。 我们的递增 RO rodeal roal 。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员