We consider the task of estimating a network cascade as fast as possible. The cascade is assumed to spread according to a general Susceptible-Infected process with heterogeneous transmission rates from an unknown source in the network. While the propagation is not directly observable, noisy information about its spread can be gathered through multiple rounds of error-prone diagnostic testing. We propose a novel adaptive procedure which quickly outputs an estimate for the cascade source and the full spread under this observation model. Remarkably, under mild conditions on the network topology, our procedure is able to estimate the full spread of the cascade in an $n$-vertex network, before $\mathrm{poly log}(n)$ vertices are affected by the cascade. We complement our theoretical analysis with simulation results illustrating the effectiveness of our methods.
翻译:我们考虑的是尽可能快地估算网络级联的任务。 级联假定根据一般可感知的受感染过程进行扩散, 其传输率来自网络中一个未知来源。 虽然传播不是直接可见的, 有关其传播的噪音信息可以通过多轮容易出错的诊断测试来收集。 我们提议一种新的适应程序, 快速输出对级联源的估计值和在这个观察模型下的全面传播。 值得注意的是, 在网络型态的温和条件下, 我们的程序能够估计在“ 级联”影响之前, 在“ 美元- 美元” 的顶端网络中, 在“ 美元- 美元” 之前, 我们的流程能够估计级联的全面扩散。 我们用模拟结果来补充我们的理论分析,说明我们方法的有效性。