Kernel maximum moment restriction (KMMR) recently emerges as a popular framework for instrumental variable (IV) based conditional moment restriction (CMR) models with important applications in conditional moment (CM) testing and parameter estimation for IV regression and proximal causal learning. The effectiveness of this framework, however, depends critically on the choice of a reproducing kernel Hilbert space (RKHS) chosen as a space of instruments. In this work, we presents a systematic way to select the instrument space for parameter estimation based on a principle of the least identifiable instrument space (LIIS) that identifies model parameters with the least space complexity. Our selection criterion combines two distinct objectives to determine such an optimal space: (i) a test criterion to check identifiability; (ii) an information criterion based on the effective dimension of RKHSs as a complexity measure. We analyze the consistency of our method in determining the LIIS, and demonstrate its effectiveness for parameter estimation via simulations.
翻译:内核最大时刻限制(KMMMR)最近成为基于工具变量(IV)的有条件时限限制(CMR)模型的流行框架,该模型在有条件时刻(CM)测试中具有重要应用,并且为IV回归和近似因果学习进行参数估计。然而,这一框架的有效性主要取决于作为仪器空间而选择的复制核心Hilbert空间(RKHS)的选择。在这项工作中,我们提出了一个系统的方法,根据最不易识别的仪器空间(LIIS)的原则选择用于参数估计的仪器空间,该空间确定模型参数的复杂程度最小。我们的选择标准结合了确定这种最佳空间的两个不同目标:(一) 检验可识别性的测试标准;(二) 基于RKHS的有效层面的信息标准,作为复杂的衡量标准。我们分析了我们确定LIS的方法的一致性,并通过模拟来证明其参数估计的有效性。