Instrumental variables (IV) regression is widely used to estimate causal treatment effects in settings where receipt of treatment is not fully random, but there exists an instrument that generates exogenous variation in treatment exposure. While IV can recover consistent treatment effect estimates, they are often noisy. Building upon earlier work in biostatistics (Joffe and Brensinger, 2003) and relating to an evolving literature in econometrics (including Abadie et al., 2019; Huntington-Klein, 2020; Borusyak and Hull, 2020), we study how to improve the efficiency of IV estimates by exploiting the predictable variation in the strength of the instrument. In the case where both the treatment and instrument are binary and the instrument is independent of baseline covariates, we study weighting each observation according to its estimated compliance (that is, its conditional probability of being affected by the instrument), which we motivate from a (constrained) solution of the first-stage prediction problem implicit to IV. The resulting estimator can leverage machine learning to estimate compliance as a function of baseline covariates. We derive the large-sample properties of a specific implementation of a weighted IV estimator in the potential outcomes and local average treatment effect (LATE) frameworks, and provide tools for inference that remain valid even when the weights are estimated nonparametrically. With both theoretical results and a simulation study, we demonstrate that compliance weighting meaningfully reduces the variance of IV estimates when first-stage heterogeneity is present, and that this improvement often outweighs any difference between the compliance-weighted and unweighted IV estimands. These results suggest that in a variety of applied settings, the precision of IV estimates can be substantially improved by incorporating compliance estimation.
翻译:在接受治疗不是完全随机的,但存在造成治疗暴露的外差变化的工具的情况下,普遍使用仪数变量(IV)回归法来估计因数处理效果,在接受治疗并非完全随机的环境下,我们研究如何提高四类估计数的效率。虽然四类估计数可以恢复持续的治疗效果估计数,但它们往往很吵。在生物统计学(Joffe和Bransenger,2003年)的早期工作基础上,并参照计量经济学(包括Abadie等人,2019年;Huntington-Klein,2020年;Huntingington-Klein,2020年;Boruusyak和Hull,2020年)的不断演变的文献,我们研究如何提高四类估计数的效率,利用可预测工具强度的可变数来估计四类估计数。 在四类加权的精确度估计数中,我们根据估计的合规性(即其有条件的受仪器影响的可能性),研究每项观测结果的加权四类估计数的不准确性,我们通过四类的理论性分析结果的正确性研究来评估。