This study proposes multivariate kernel density estimation by stagewise minimization algorithm based on $U$-divergence and a simple dictionary. The dictionary consists of an appropriate scalar bandwidth matrix and a part of the original data. The resulting estimator brings us data-adaptive weighting parameters and bandwidth matrices, and realizes a sparse representation of kernel density estimation. We develop the non-asymptotic error bound of estimator obtained via the proposed stagewise minimization algorithm. It is confirmed from simulation studies that the proposed estimator performs competitive to or sometime better than other well-known density estimators.
翻译:本研究建议根据美元波动率和一个简单的字典,通过分阶段最小化算法,对多变量内核密度进行估算。词典包括一个适当的弧带宽矩阵和原始数据的一部分。由此得出的估计值给我们带来了数据适应加权参数和带宽矩阵,并实现了内核密度估计的稀疏表现。我们开发了通过拟议的分阶段最小化算法获得的估计值的非零位误差。模拟研究证实,拟议的估计值与其他众所周知的密度估计值相比具有竞争力,或比其他已知的密度估计值好一些。