Real-world image super-resolution (SR) is a challenging image translation problem. Low-resolution (LR) images are often generated by various unknown transformations rather than by applying simple bilinear down-sampling on high-resolution (HR) images. To address this issue, this paper proposes a novel pipeline which exploits style and attention mechanism in real-world SR. Our pipeline consists of a style Variational Autoencoder (styleVAE) and a SR network incorporated with attention mechanism. To get real-world-like low-quality images paired with the HR images, we design the styleVAE to transfer the complex nuisance factors in real-world LR images to the generated LR images. We also use mutual information estimation (MI) to get better style information. For our SR network, we firstly propose a global attention residual block to learn long-range dependencies in images. Then another local attention residual block is proposed to enforce the attention of SR network moving to local areas of images in which texture detail will be filled. It is worth noticing that styleVAE can be presented in a plug-and-play manner and thus can help to improve the generalization and robustness of our SR method as well as other SR methods. Extensive experiments demonstrate that our method surpasses the state-of-the-art work, both quantitatively and qualitatively.
翻译:真实世界图像超分辨率(SR)是一个具有挑战性的图像转换问题。 低分辨率(LR)图像往往是由各种未知的变异生成的,而不是通过对高分辨率图像应用简单的双线下游抽样(HR)图像生成的。 为解决这一问题,本文件提出一个利用真实世界SR的风格和关注机制的新型管道。 我们的管道包括一个风格变异自动编码器(StypeVAE)和一个带有关注机制的SR网络。 为了让真实世界相似的低质量图像与HR图像相匹配,我们设计了风格VAE, 将真实世界 LR图像中的复杂的扰动因子转换为生成的LR图像。 我们还使用共同的信息估计(MI)来获取更好的风格信息。 对于我们的SR网络,我们首先提出一个全球关注残余屏障,以学习图像的远程依赖性。 然后提出另一个本地关注残余屏障, 以强化SR网络的注意力移动到可填充文字细节的地方图像区域。 我们值得注意的是, StyVAE可以将真实性图像中的复杂因素转换成一种高等级的方法, 来展示我们通用的高级的SR- 方法,从而展示我们更精确地展示我们的工作方式和超前的方法。