Deep neural networks have been shown to provide accurate function approximations in high dimensions. However, fitting network parameters requires training data that may not be available beforehand, which is particularly challenging in science and engineering applications where often it is even unclear how to collect new informative training data in the first place. This work proposes Neural Galerkin schemes based on deep learning that generate training data samples with active learning for numerically solving high-dimensional partial differential equations. Neural Galerkin schemes train networks by minimizing the residual sequentially over time, which enables adaptively collecting new training data in a self-informed manner that is guided by the dynamics described by the partial differential equations, which is in stark contrast to many other machine learning methods that aim to fit network parameters globally in time without taking into account training data acquisition. Our finding is that the active form of gathering training data of the proposed Neural Galerkin schemes is key for numerically realizing the expressive power of networks in high dimensions. Numerical experiments demonstrate that Neural Galerkin schemes have the potential to enable simulating phenomena and processes with many variables for which traditional and other deep-learning-based solvers fail, especially when features of the solutions evolve locally such as in high-dimensional wave propagation problems and interacting particle systems described by Fokker-Planck and kinetic equations.


翻译:深心神经网络被证明能够提供高维的准确功能近似值;然而,适当的网络参数需要培训数据,而这种培训数据可能事先无法提供,在科学和工程应用方面尤其具有挑战性,因为通常甚至无法首先收集新的信息培训数据。这项工作提出了基于深层学习的神经Galerkin计划,这种深层学习能够产生培训数据样本,并积极学习数字解析高维部分差异方程式。神经加热金计划通过在时间上尽可能减少残缺来培训网络,从而能够以自我知情的方式适应性地收集新的培训数据,这种数据以部分差异方程式描述的动态为指导,这在科学和工程应用方面尤其与许多其他机器学习方法形成鲜明的对比,这些方法的目的是在不考虑培训数据获取的情况下及时使网络参数适合全球。我们的发现是,为拟议的神经加热金计划收集培训数据的积极形式对于从数字上认识高维度网络的表达力十分关键。 数值实验表明,神经加热金计划有可能以自适应性地收集新的培训数据和过程,许多变量,而基于部分差异方程式的溶解解解解的系统则无法进行。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月15日
Arxiv
23+阅读 · 2022年2月4日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员