The recent advances in continual (incremental or lifelong) learning have concentrated on the prevention of forgetting that can lead to catastrophic consequences, but there are two outstanding challenges that must be addressed. The first is the evaluation of the robustness of the proposed methods. The second is ensuring the security of learned tasks remains largely unexplored. This paper presents a comprehensive study of the susceptibility of the continually learned tasks (including both current and previously learned tasks) that are vulnerable to forgetting. Such vulnerability of tasks against adversarial attacks raises profound issues in data integrity and privacy. We consider all three scenarios (i.e, task-incremental leaning, domain-incremental learning and class-incremental learning) of continual learning and explore three regularization-based experiments, three replay-based experiments, and one hybrid technique based on the reply and exemplar approach. We examine the robustness of these methods. In particular, we consider cases where we demonstrate that any class belonging to the current or previously learned tasks is prone to misclassification. Our observations, we identify potential limitations in continual learning approaches against adversarial attacks. Our empirical study recommends that the research community consider the robustness of the proposed continual learning approaches and invest extensive efforts in mitigating catastrophic forgetting.


翻译:最近不断(高等或终身)学习的进展集中于防止忘却可能导致灾难性后果的忘却,但有两个有待解决的挑战。第一个是评价拟议方法的稳健性。第二个是确保学习任务的安全性,基本上尚未探索。本文件全面研究容易被遗忘的不断学习的任务(包括当前和以往学到的任务)的易感性。这种在对抗性攻击面前的脆弱性在数据完整性和隐私方面引起深刻的问题。我们认为,持续学习的所有三种情景(即任务偏瘦、领域偏重学习和班级学习),以及探索三个基于正规化的实验、三个基于重现的实验以及一个基于答复和特例的混合技术。我们审视这些方法的稳健性。我们特别考虑一些案例,在这些案例中,我们证明属于当前或以前学到的任务的任何类别都容易被错误分类。我们的观察发现,我们在不断学习对抗性攻击的方法方面可能存在局限性。我们的经验研究建议,研究界应考虑如何持续地研究减缓灾难性努力。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月8日
Arxiv
38+阅读 · 2020年3月10日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员