When modeling multivariate phenomena, properly capturing the joint extremal behavior is often one of the many concerns. Archimax copulas appear as successful candidates in case of asymptotic dependence. In this paper, the class of Archimax copulas is extended via their stochastic representation to a clustered construction. These clustered Archimax copulas are characterized by a partition of the random variables into groups linked by a radial copula; each cluster is Archimax and therefore defined by its own Archimedean generator and stable tail dependence function. The proposed extension allows for both asymptotic dependence and independence between the clusters, a property which is sought, for example, in applications in environmental sciences and finance. The model also inherits from the ability of Archimax copulas to capture dependence between variables at pre-extreme levels. The asymptotic behavior of the model is established, leading to a rich class of stable tail dependence functions.
翻译:当模拟多变量现象时,正确捕捉联合极端行为往往是许多关注问题之一。 Archimax 相片在无症状依赖性的情况下似乎作为成功的候选物出现。 在本文中,Archimax 相片类通过其随机代表制扩展为集群构造。 这些组合式的Archimax 相片的特征是随机变量分成成由放射性相片连接的一组; 每个组群都是Archimax, 因此由它自己的Archimedean 生成器和稳定的尾部依赖性功能来界定。 拟议的扩展允许各组群之间在无症状依赖性和独立性两方面都存在成功的可能性, 例如在环境科学和金融应用中寻求这种属性。 该模型还继承了Archimax 相片组在前水平上捕捉变量之间依赖性的能力。 模型的无症状行为已经确立, 导致一个稳定的尾部依赖性功能的丰富类别。