Motion, scene and object are three primary visual components of a video. In particular, objects represent the foreground, scenes represent the background, and motion traces their dynamics. Based on this insight, we propose a two-stage MOtion, Scene and Object decomposition framework (MOSO) for video prediction, consisting of MOSO-VQVAE and MOSO-Transformer. In the first stage, MOSO-VQVAE decomposes a previous video clip into the motion, scene and object components, and represents them as distinct groups of discrete tokens. Then, in the second stage, MOSO-Transformer predicts the object and scene tokens of the subsequent video clip based on the previous tokens and adds dynamic motion at the token level to the generated object and scene tokens. Our framework can be easily extended to unconditional video generation and video frame interpolation tasks. Experimental results demonstrate that our method achieves new state-of-the-art performance on five challenging benchmarks for video prediction and unconditional video generation: BAIR, RoboNet, KTH, KITTI and UCF101. In addition, MOSO can produce realistic videos by combining objects and scenes from different videos.
翻译:视频的三个主要视觉组成部分是视频的感官、 场景和对象。 特别是, 对象代表前景, 场景代表背景, 运动跟踪动态 。 基于这一洞察, 我们提出一个由 MOSO- VQVAE 和 MOSO- Transformination 组成的两阶段运动、 场景和对象分解框架( MOSO) 用于视频预测。 在第一阶段, MOSO- VQVAE 将上一个视频剪辑分解到运动、 场景和对象组件中, 并把它们作为不同组的离散符号 。 然后, 在第二阶段, MOSO- Transfrench 预测以前几个符号为基础的后续视频剪片片片段的对象和场景符号, 并在代号上增加生成的物体和场景符号的动态动作。 我们的框架可以很容易扩展为无条件的视频生成和视频框内插图。 实验结果显示, 我们的方法在视频预测和无条件生成的视频的5个具有挑战性基准上实现了新的状态性表现: ABIR、 RoboNet、 KTH、 KTHTH、 KITTITIT和UC101 。 此外片段可以制作不同图像。</s>