We propose a scheme for detecting and correcting faults in any Clifford circuit. The scheme is based on the observation that the set of all possible outcome bit-strings of a Clifford circuit is a linear code, which we call the outcome code. From the outcome code we construct a corresponding stabilizer code, the spacetime code. Our construction extends the circuit-to-code construction of Bacon, Flammia, Harrow and Shi [2], revisited recently by Gottesman [16], to include intermediate and multi-qubit measurements. With this correspondence, we reduce the problem of correcting faults in a circuit to the well-studied problem of correcting errors in a stabilizer code. More precisely, a most likely error decoder for the spacetime code can be transformed into a most likely fault decoder for the circuit. We give efficient algorithms to construct the outcome and spacetime codes. We also identify conditions under which these codes are LDPC, and give an algorithm to generate low-weight checks, which can then be combined with effcient LDPC code decoders.
翻译:暂无翻译