We introduce a new quantum algorithm for computing the Betti numbers of a simplicial complex. In contrast to previous quantum algorithms that work by estimating the eigenvalues of the combinatorial Laplacian, our algorithm is an instance of the generic Incremental Algorithm for computing Betti numbers that incrementally adds simplices to the simplicial complex and tests whether or not they create a cycle. In contrast to existing quantum algorithms for computing Betti numbers that work best when the complex has close to the maximal number of simplices, our algorithm works best for sparse complexes. To test whether a simplex creates a cycle, we introduce a quantum span-program algorithm. We show that the query complexity of our span program is parameterized by quantities called the effective resistance and effective capacitance of the boundary of the simplex. Unfortunately, we also prove upper and lower bounds on the effective resistance and capacitance, showing both quantities can be exponentially large with respect to the size of the complex, implying that our algorithm would have to run for exponential time to exactly compute Betti numbers. However, as a corollary to these bounds, we show that the spectral gap of the combinatorial Laplacian can be exponentially small. As the runtime of all previous quantum algorithms for computing Betti numbers are parameterized by the inverse of the spectral gap, our bounds show that all quantum algorithms for computing Betti numbers must run for exponentially long to exactly compute Betti numbers. Finally, we prove some novel formulas for effective resistance and effective capacitance to give intuition for these quantities.
翻译:暂无翻译