Generating medical images from human-drawn free-hand sketches holds promise for various important medical imaging applications. Due to the extreme difficulty in collecting free-hand sketch data in the medical domain, most deep learning-based methods have been proposed to generate medical images from the synthesized sketches (e.g., edge maps or contours of segmentation masks from real images). However, these models often fail to generalize on the free-hand sketches, leading to unsatisfactory results. In this paper, we propose a practical free-hand sketch-to-image generation model called Sketch2MedI that learns to represent sketches in StyleGAN's latent space and generate medical images from it. Thanks to the ability to encode sketches into this meaningful representation space, Sketch2MedI only requires synthesized sketches for training, enabling a cost-effective learning process. Our Sketch2MedI demonstrates a robust generalization to free-hand sketches, resulting in high-quality and realistic medical image generations. Comparative evaluations of Sketch2MedI against the pix2pix, CycleGAN, UNIT, and U-GAT-IT models show superior performance in generating pharyngeal images, both quantitative and qualitative across various metrics.
翻译:暂无翻译