We present EXE-GAN, a novel exemplar-guided facial inpainting framework using generative adversarial networks. Our approach can not only preserve the quality of the input facial image but also complete the image with exemplar-like facial attributes. We achieve this by simultaneously leveraging the global style of the input image, the stochastic style generated from the random latent code, and the exemplar style of exemplar image. We introduce a novel attribute similarity metric to encourage networks to learn the style of facial attributes from the exemplar in a self-supervised way. To guarantee the natural transition across the boundaries of inpainted regions, we introduce a novel spatial variant gradient backpropagation technique to adjust the loss gradients based on the spatial location. Extensive evaluations and practical applications on public CelebA-HQ and FFHQ datasets validate the superiority of EXE-GAN in terms of the visual quality in facial inpainting.
翻译:我们同时利用输入图像的全球风格、随机潜伏代码生成的随机光学风格和示范图像的模范风格来实现这一目标。我们引入了一种新的属性相似度度量,鼓励网络以自我监督的方式从演示中学习面部特征的风格。为了保证输入面部图像的自然转变,我们引入了一种新的空间变异梯度反演法技术,以根据空间位置调整损失梯度。对公众CelibA-HQ和FFHQ数据集的广泛评价和实践应用证实了EXE-GAN在面部涂料视觉质量方面的优势。