Graphical models are a powerful tool in modelling and analysing complex biological associations in high-dimensional data. The R-package netgwas implements the recent methodological development on copula graphical models to (i) construct linkage maps, (ii) infer linkage disequilibrium networks from genotype data, and (iii) detect high-dimensional genotype-phenotype networks. The netgwas learns the structure of networks from ordinal data and mixed ordinal-and-continuous data. Here, we apply the functionality in netgwas to various multivariate example datasets taken from the literature to demonstrate the kind of insight that can be obtained from the package. We show that our package offers a more realistic association analysis than the classical approaches, as it discriminates between direct and induced correlations by adjusting for the effect of all other variables while performing pairwise associations. This feature controls for spurious interactions between variables that can arise from conventional approaches in a biological sense. The netgwas package uses a parallelization strategy on multi-core processors to speed-up computations. The netgwas package is freely available at https://cran.r-project.org/web/packages/netgwas
翻译:图形模型是建模和分析高维数据复杂生物联系的有力工具。R-package Netgwas将最近关于千叶图形模型的方法发展应用于(一) 构建连接图,(二) 从基因型数据推断联系不均的网络,(三) 检测高维基因型-pheno型网络。网格瓦从正流数据和混合、连续数据中学习网络结构。在这里,我们将网格瓦的功能应用于从文献中取取的各种多变量示例数据集,以展示可以从包中获得的洞察力。我们显示,我们的包包比经典方法提供了更为现实的联系分析,因为它通过调整所有其他变量的影响,进行双向联系,区分了直接和诱导的相互关系。这种特征控制对从生物意义上的常规方法中产生的变量之间令人憎恶的相互作用。网格was 包在多核心处理器上使用平行战略来加速计算。网格was/netwas/netgranprojors.