Topological loss based on persistent homology has shown promise in various applications. A topological loss enforces the model to achieve certain desired topological property. Despite its empirical success, less is known about the optimization behavior of the loss. In fact, the topological loss involves combinatorial configurations that may oscillate during optimization. In this paper, we introduce a general purpose regularized topology-aware loss. We propose a novel regularization term and also modify existing topological loss. These contributions lead to a new loss function that not only enforces the model to have desired topological behavior, but also achieves satisfying convergence behavior. Our main theoretical result guarantees that the loss can be optimized efficiently, under mild assumptions.
翻译:基于持久性同质学的地形损失在各种应用中显示出希望。 一种地形损失使模型强制实现某些理想的地形属性。 尽管它取得了经验性的成功, 但对损失的最佳行为却知之甚少。 事实上, 地形损失涉及在优化过程中可能浮游的组合结构。 在本文中, 我们引入了一个通用的固定的地形意识损失。 我们提出了一个新颖的正规化术语, 并修改现有的地形损失。 这些贡献导致一种新的损失功能, 不仅使模型强制实现理想的地形行为, 而且还实现令人满意的趋同行为。 我们的主要理论结果保证了在温和假设下, 损失能够被高效地优化。