A novel algorithm for producing smooth nonlinearities on digital hardware is presented. The non-linearities are inherently quadratic and have both symmetrical and asymmetrical variants. The integer (and fixed point) implementation is highly amenable for use with digital gates on an ASIC or FPGA. The implementations are multiplier-less. Scaling of the non-linear output, as required in an LSTM cell, is integrated into the implementation. This too does not require a multiplier. The non-linearities are useful as activation functions in a variety of ANN architectures. The floating point mappings have been compared with other non-linearities and have been benchmarked. Results show that these functions should be considered in the ANN design phase. The hardware resource usage of the implementations have been thoroughly investigated. Our results make a strong case for implementions in edge applications. This document summarizes the findings and serves to give a quick overview of the outcomes of our research\footnote{The authors peer-reviewed manuscripts (available at https://doi.org/10.1016/j.neucom.2021.02.030) offer more detail and may be better suited for a thorough consideration}.


翻译:在数字硬件上制作平滑的非线性的新算法被展示出来。非线性在本质上是四边形的,既有对称的,也有对称的变体。整点(和固定点)执行非常适合在ASIC或FPGA上使用数字门。执行是无倍数的。执行是无倍数的。 LSTM 单元格所要求的非线性输出的缩放将纳入执行中。这也不需要乘数。非线性作为各种ANN结构的激活功能是有用的。浮动点绘图与其他非线性绘图进行了比较,并作了基准。结果显示这些功能应该在ANN的设计阶段加以考虑。这些执行的硬件资源使用情况已经进行了彻底调查。我们的结果为边缘应用中的执行提供了有力的理由。本文件总结了研究结果,有助于快速概述我们研究脚注的结果 {作者们经过同行审查的手稿(见https://doi.org/10.1016/j.neucom.202.030) (可在https://doi.org// 101016/j.02/0230) 进行更深入的考虑。

0
下载
关闭预览

相关内容

专知会员服务
38+阅读 · 2021年6月3日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
40+阅读 · 2020年9月6日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
TensorFlow 2.0 学习资源汇总
专知会员服务
67+阅读 · 2019年10月9日
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
7+阅读 · 2020年8月7日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
VIP会员
相关VIP内容
专知会员服务
38+阅读 · 2021年6月3日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
40+阅读 · 2020年9月6日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
TensorFlow 2.0 学习资源汇总
专知会员服务
67+阅读 · 2019年10月9日
相关资讯
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员