This paper introduces a new class of numerical methods for the time integration of evolution equations set as Cauchy problems of ODEs or PDEs. The systematic design of these methods mixes the Runge-Kutta collocation formalism with collocation techniques, in such a way that the methods are linearly implicit and have high order. The fact that these methods are implicit allows to avoid CFL conditions when the large systems to integrate come from the space discretization of evolution PDEs. Moreover, these methods are expected to be efficient since they only require to solve one linear system of equations at each time step, and efficient techniques from the literature can be used to do so. After the introduction of the methods, we set suitable definitions of consistency and stability for these methods. This allows for a proof that arbitrarily high order linearly implicit methods exist and converge when applied to ODEs. Eventually, we perform numerical experiments on ODEs and PDEs that illustrate our theoretical results for ODEs, and compare our methods with standard methods for several evolution PDEs.
翻译:本文为进化方程式的时间整合引入了一种新的数字方法类别,这些进化方程式被设定为“ODEs”或“PDEs”的“Cauchy”问题。这些方法的系统设计将龙格-库塔同位形式主义与合用技术混在一起,使方法线性隐含,且具有高度的顺序。当大型系统从进化PDEs的空间分解而成时,这些方法可以隐含地避免CFL条件。此外,这些方法预计会很有效,因为它们只需要在每一个步骤解决一个直线方程式系统,而文献中的高效技术可以用来这样做。在采用这些方法之后,我们为这些方法的连贯性和稳定性制定了适当的定义。这样可以证明任意高序的线性隐含方法存在,并且在应用到ODEs时会趋于一致。最后,我们用ODEs和PDEs进行数字实验,以说明我们的进化方程式的理论结果,并将我们的方法与若干进化PDEs的标准方法进行比较。