This paper introduces a new class of numerical methods for the time integration of evolution equations set as Cauchy problems of ODEs or PDEs. The systematic design of these methods mixes the Runge-Kutta collocation formalism with collocation techniques, in such a way that the methods are linearly implicit and have high order. The fact that these methods are implicit allows to avoid CFL conditions when the large systems to integrate come from the space discretization of evolution PDEs. Moreover, these methods are expected to be efficient since they only require to solve one linear system of equations at each time step, and efficient techniques from the literature can be used to do so. After the introduction of the methods, we set suitable definitions of consistency and stability for these methods. This allows for a proof that arbitrarily high order linearly implicit methods exist and converge when applied to ODEs. Eventually, we perform numerical experiments on ODEs and PDEs that illustrate our theoretical results for ODEs, and compare our methods with standard methods for several evolution PDEs.


翻译:本文为进化方程式的时间整合引入了一种新的数字方法类别,这些进化方程式被设定为“ODEs”或“PDEs”的“Cauchy”问题。这些方法的系统设计将龙格-库塔同位形式主义与合用技术混在一起,使方法线性隐含,且具有高度的顺序。当大型系统从进化PDEs的空间分解而成时,这些方法可以隐含地避免CFL条件。此外,这些方法预计会很有效,因为它们只需要在每一个步骤解决一个直线方程式系统,而文献中的高效技术可以用来这样做。在采用这些方法之后,我们为这些方法的连贯性和稳定性制定了适当的定义。这样可以证明任意高序的线性隐含方法存在,并且在应用到ODEs时会趋于一致。最后,我们用ODEs和PDEs进行数字实验,以说明我们的进化方程式的理论结果,并将我们的方法与若干进化PDEs的标准方法进行比较。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
TextCNN大牛Kim《深度无监督学习句法结构分析》,88页ppt
专知会员服务
28+阅读 · 2021年1月13日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员