We study how different output layers in a deep neural network learn and forget in continual learning settings. The following three factors can affect catastrophic forgetting in the output layer: (1) weights modifications, (2) interference, and (3) projection drift. In this paper, our goal is to provide more insights into how changing the output layers may address (1) and (2). Some potential solutions to those issues are proposed and evaluated here in several continual learning scenarios. We show that the best-performing type of the output layer depends on the data distribution drifts and/or the amount of data available. In particular, in some cases where a standard linear layer would fail, it turns out that changing parameterization is sufficient in order to achieve a significantly better performance, whithout introducing a continual-learning algorithm and instead using the standard SGD to train a model. Our analysis and results shed light on the dynamics of the output layer in continual learning scenarios, and suggest a way of selecting the best type of output layer for a given scenario.


翻译:我们研究深神经网络的不同输出层如何在不断学习的环境中学习和遗忘。以下三个因素可能会影响产出层的灾难性遗忘:(1) 重量修改,(2) 干扰,(3) 投影漂移。在本文中,我们的目标是更深入地了解产出层的变化如何解决(1)和(2) 这些问题的一些潜在解决办法在这里以若干持续学习的情景中提出和评价。我们表明产出层的最佳性能取决于数据分布流和/或现有数据的数量。特别是在某些情况下,标准线性层将失败,结果显示改变参数足以实现显著改善性能,引入持续学习算法,而不是使用标准 SGD 来培训模型。我们的分析与结果揭示了持续学习情景中产出层的动态,并提出了为特定情景选择最佳产出层类型的方法。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
31+阅读 · 2021年7月15日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
32+阅读 · 2020年4月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
浅谈主动学习(Active Learning)
凡人机器学习
31+阅读 · 2020年6月18日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
49+阅读 · 2021年5月9日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
6+阅读 · 2018年12月10日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
25+阅读 · 2018年1月24日
VIP会员
相关资讯
浅谈主动学习(Active Learning)
凡人机器学习
31+阅读 · 2020年6月18日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
49+阅读 · 2021年5月9日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
6+阅读 · 2018年12月10日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
25+阅读 · 2018年1月24日
Top
微信扫码咨询专知VIP会员