Crop yield prediction is one of the tasks of Precision Agriculture that can be automated based on multi-source periodic observations of the fields. We tackle the yield prediction problem using a Convolutional Neural Network (CNN) trained on data that combines radar satellite imagery and on-ground information. We present a CNN architecture called Hyper3DNetReg that takes in a multi-channel input image and outputs a two-dimensional raster, where each pixel represents the predicted yield value of the corresponding input pixel. We utilize radar data acquired from the Sentinel-1 satellites, while the on-ground data correspond to a set of six raster features: nitrogen rate applied, precipitation, slope, elevation, topographic position index (TPI), and aspect. We use data collected during the early stage of the winter wheat growing season (March) to predict yield values during the harvest season (August). We present experiments over four fields of winter wheat and show that our proposed methodology yields better results than five compared methods, including multiple linear regression, an ensemble of feedforward networks using AdaBoost, a stacked autoencoder, and two other CNN architectures.
翻译:作物产量预测是精密农业的任务之一,可以在多源对田地进行定期观测的基础上实现自动化。我们利用一个经过雷达卫星图像和地面信息相结合数据培训的进化神经网络(CNN)解决产量预测问题。我们展示了一个称为Hyper3DNetReg的CNN结构,该结构以多通道输入图像和产生一个二维光栅,每个像素代表相应的投入像素的预测产量值。我们利用从Sentinel-1号卫星获得的雷达数据,而地面数据对应一套六种光栅特征:氮率应用、降水量、斜度、坡度、地势、地形位置指数(TPI)和方面。我们使用冬季小麦生长季节早期(3月)收集的数据预测收获季节(8月)的产量值。我们介绍了四个冬季小麦领域的实验,并表明我们拟议的方法比五个方法产生更好的结果,包括多线状回归、使用AdaBoost、堆叠式自动co和另外两个CNNAM结构的饲料网。