This study reports a novel hardware-friendly modular architecture for implementing one dimensional convolutional neural network (1D-CNN) digital predistortion (DPD) technique to linearize RF power amplifier (PA) real-time.The modular nature of our design enables DPD system adaptation for variable resource and timing constraints.Our work also presents a co-simulation architecture to verify the DPD performance with an actual power amplifier hardware-in-the-loop.The experimental results with 100 MHz signals show that the proposed 1D-CNN obtains superior performance compared with other neural network architectures for real-time DPD application.
翻译:这项研究报告了一个新型的硬件友好型模块架构,用于实施一维进化神经网络(1D-CNN)数字预感(DPD)技术,以将RF功率放大器(PA)实时线性化。 我们设计的模块化性质使得DPD系统能够适应可变资源和时间限制。 我们的工作还提供了一个共同模拟架构,用实际的功率放大器硬件来核查DPD性能。 100兆赫信号的实验结果表明,拟议的1D-CNN比其他实时DPD应用程序的神经网络结构有更高的性能。