Density-ratio estimation via classification is a cornerstone of unsupervised learning. It has provided the foundation for state-of-the-art methods in representation learning and generative modelling, with the number of use-cases continuing to proliferate. However, it suffers from a critical limitation: it fails to accurately estimate ratios p/q for which the two densities differ significantly. Empirically, we find this occurs whenever the KL divergence between p and q exceeds tens of nats. To resolve this limitation, we introduce a new framework, telescoping density-ratio estimation (TRE), that enables the estimation of ratios between highly dissimilar densities in high-dimensional spaces. Our experiments demonstrate that TRE can yield substantial improvements over existing single-ratio methods for mutual information estimation, representation learning and energy-based modelling.
翻译:通过分类进行密度-干线估计是未经监督的学习的基石,为代表性学习和基因建模方面的最先进方法奠定了基础,使用案例数量继续增加,但受到一个关键的限制:它未能准确估计两种密度差异很大的p/q比率。我们很自然地发现,每当p和q之间的KL差异超过10纳特时,就会发生这种情况。为了解决这一限制,我们引入了一个新的框架,即对密度-干线进行远程校准(TRE),以便能够估计高度空间高度不同密度之间的比率。我们的实验表明,TRE可以大大改进现有的信息共同估计、代表性学习和能源建模的单一拉特方法。