Object 6D pose estimation is a fundamental task in many applications. Conventional methods solve the task by detecting and matching the keypoints, then estimating the pose. Recent efforts bringing deep learning into the problem mainly overcome the vulnerability of conventional methods to environmental variation due to the hand-crafted feature design. However, these methods cannot achieve end-to-end learning and good interpretability at the same time. In this paper, we propose REDE, a novel end-to-end object pose estimator using RGB-D data, which utilizes network for keypoint regression, and a differentiable geometric pose estimator for pose error back-propagation. Besides, to achieve better robustness when outlier keypoint prediction occurs, we further propose a differentiable outliers elimination method that regresses the candidate result and the confidence simultaneously. Via confidence weighted aggregation of multiple candidates, we can reduce the effect from the outliers in the final estimation. Finally, following the conventional method, we apply a learnable refinement process to further improve the estimation. The experimental results on three benchmark datasets show that REDE slightly outperforms the state-of-the-art approaches and is more robust to object occlusion.
翻译:对象 6D 表示估计是许多应用中的一项基本任务 。 常规方法通过检测和匹配关键点来解决这个问题, 然后对组合进行估计 。 最近的努力使得这一问题的深度学习主要克服了传统方法由于手工制作特征设计而对环境变化的脆弱性。 但是,这些方法无法同时实现端到端学习和良好的解释。 在本文中, 我们提议使用 RGB- D 数据来使用新颖的端到端天体作为估计符, 这些数据利用关键点回归网络, 以及一个不同的几何方位方位表示器来显示错误的反向反向。 此外, 在出现超出关键点预测时, 我们进一步提出一种可以同时反向候选结果和信任的不同消除异端的方法 。 将多个候选人的可信度加权组合, 我们可以减少最终估计的外部对象的影响 。 最后, 按照常规方法, 我们应用一个可以学习的改进进程来进一步改进估计。 三个基准数据集的实验结果显示, REDE 略超强的物体法是更稳健的。