The Period--Luminosity relation (PLR) of Mira variable stars is an important tool to determine astronomical distances. The common approach of estimating the PLR is a two-step procedure that first estimates the Mira periods and then runs a linear regression of magnitude on log period. When the light curves are sparse and noisy, the accuracy of period estimation decreases and can suffer from aliasing effects. Some methods improve accuracy by incorporating complex model structures at the expense of significant computational costs. Another drawback of existing methods is that they only provide point estimation without proper estimation of uncertainty. To overcome these challenges, we develop a hierarchical Bayesian model that simultaneously models the quasi-periodic variations for a collection of Mira light curves while estimating their common PLR. By borrowing strengths through the PLR, our method automatically reduces the aliasing effect, improves the accuracy of period estimation, and is capable of characterizing the estimation uncertainty. We develop a scalable stochastic variational inference algorithm for computation that can effectively deal with the multimodal posterior of period. The effectiveness of the proposed method is demonstrated through simulations, and an application to observations of Miras in the Local Group galaxy M33. Without using ad-hoc period correction tricks, our method achieves a distance estimate of M33 that is consistent with published work. Our method also shows superior robustness to downsampling of the light curves.
翻译:Mira变星的周期-长期关系(PLR)是确定天文距离的一个重要工具。估算PLR的共同方法是一个两步程序,先对Mira周期进行估算,然后在日志周期上进行线性回归。当光曲线干燥和噪音时,时间估计的准确性就会下降,并可能受到别名效应的影响。有些方法通过采用复杂的模型结构来提高准确性,而牺牲了巨大的计算成本。现有方法的另一个缺点是,它们只能提供点估计,而没有适当估计不确定性。为了克服这些挑战,我们开发了一种双级贝耶斯模式,同时模拟收集米拉光曲线的准周期变异性,同时估计其共同的PLRR周期。通过PLR借用强力,我们的方法自动减少别名效应,提高时间估计的准确性,并能够确定估算不确定性的特点。我们开发了一种可扩缩的随机变的计算算法,可以有效地处理时段的多式联运远地点。为了克服这些挑战,我们开发的方法的有效性是通过模拟来模拟,同时对米拉光曲线进行准的准性测算法的优度观测,同时使用我们所公布的M的测距方法,还显示了我们使用的系统测距方法。