Abstract Interpretation approximates the semantics of a program by mimicking its concrete fixpoint computation on an abstract domain $\mathbb{A}$. The abstract (post-) fixpoint computation is classically divided into two phases: the ascending phase, using widenings as extrapolation operators to enforce termination, is followed by a descending phase, using narrowings as interpolation operators, so as to mitigate the effect of the precision losses introduced by widenings. In this paper we propose a simple variation of this classical approach where, to more effectively recover precision, we decouple the two phases: in particular, before starting the descending phase, we replace the domain $\mathbb{A}$ with a more precise abstract domain $\mathbb{D}$. The correctness of the approach is justified by casting it as an instance of the A$^2$I framework. After demonstrating the new technique on a simple example, we summarize the results of a preliminary experimental evaluation, showing that it is able to obtain significant precision improvements for several choices of the domains $\mathbb{A}$ and $\mathbb{D}$.


翻译:抽象解释通过在抽象域名 $\ mathbb{A} 中模仿其具体固定点计算方法,大致相当于一个程序的语义。抽象(后)固定点计算通常分为两个阶段:上升阶段,利用扩大作为外推操作员执行终止,随后是递增阶段,利用缩小作为内推操作员,以减轻因扩大而带来的精确损失的影响。在本文中,我们建议了这种传统方法的简单变异,为了更有效地恢复精确性,我们分解了两个阶段:特别是在开始递增阶段之前,我们用更精确的抽象域名 $\ mathbb{A} 替换了域名 $\ mathb{D} 美元。这种方法的正确性是将其作为A$2美元框架的例子。我们用一个简单的例子来展示了新技术,我们总结了初步实验评估的结果,表明它能够为 $\mathb{A} 和 $\\\ mathb} $\\ a} $\\ a} $\\ a} $\\ a} $\ b} 提供若干选择获得显著的精确性改进。

0
下载
关闭预览

相关内容

专知会员服务
88+阅读 · 2021年6月29日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月11日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员