We prove a new Elekes-Szab\'o type estimate on the size of the intersection of a Cartesian product $A\times B\times C$ with an algebraic surface $\{f=0\}$ over the reals. In particular, if $A,B,C$ are sets of $N$ real numbers and $f$ is a trivariate polynomial, then either $f$ has a special form that encodes additive group structure (for example $f(x,y,x) = x + y - z$), or $A \times B\times C \cap\{f=0\}$ has cardinality $O(N^{12/7})$. This is an improvement over the previously bound $O(N^{11/6})$. We also prove an asymmetric version of our main result, which yields an Elekes-Ronyai type expanding polynomial estimate with exponent $3/2$. This has applications to questions in combinatorial geometry related to the Erd\H{o}s distinct distances problem. Like previous approaches to the problem, we rephrase the question as a $L^2$ estimate, which can be analyzed by counting additive quadruples. The latter problem can be recast as an incidence problem involving points and curves in the plane. The new idea in our proof is that we use the order structure of the reals to restrict attention to a smaller collection of proximate additive quadruples.
翻译:我们证明一个新的Elekes-Szab\'o 类型对卡尔提斯产物的交点大小的Elekes-Szab\'o 型估算值为美元A\time B\time B\time B\time C$C$与代数表面的C$@ff=0 ⁇ 美元相对于真实值。特别是,如果A,B,C$是实际值的一套美元,而美元是三变多元值的组合,那么,美元中的任何一种美元都有一种特殊的形式来编码添加添加复合组结构(例如美元(x,y,x)=x+ y - z$),或$A\time B\time C\time C\cle cal=0 $有基数 $O(N ⁇ 12/7}) =0 $。这比以前约束值的$O(N ⁇ 11/6}美元) 美元(美元,美元) 美元(美元) 美元) 美元(美元) 美元(yonai) ty tyle typeque type type typeal rume rude super super super super super super sub sub sub sub sub sub sub 3/2.